Solve the traveling salesman problem by enumeration if \(n = 4\) and the cost \(c_{ij}\) is given in the following matrix: \[\begin{bmatrix}- & 1 & 8 & 11\\16 & - & 3 & 6\\4 & 9 & - & 11\\8 & 3 & 2 & -\end{bmatrix}\]

Order Total cost
1 2 3 4 1 1 + 3 + 11 + 8 = 23
1 2 4 3 1 1 + 6 + 2 + 4 = 13
1 3 2 4 1 8 + 9 + 6 + 8 = 31
1 3 4 2 1 8 + 11 + 3 + 16 = 38
1 4 2 3 1 11 + 3 + 3 + 4 = 21
1 4 3 2 1 11 + 2 + 9 + 16 = 38
2 1 3 4 2 16 + 8 + 11 + 3 = 38
2 1 4 3 2 16 + 11 + 2 + 9 = 38
2 3 1 4 2 3 + 4 + 11 + 3 = 21
2 3 4 1 2 3 + 11 + 8 + 1 = 23
2 4 1 3 2 6 + 8 + 8 + 9 = 31
2 4 3 1 2 6 + 2 + 4 + 1 = 13
3 1 2 4 3 4 + 1 + 6 + 2 = 13
3 1 4 2 3 4 + 11 + 3 + 3 = 21
3 2 1 4 3 9 + 16 + 11 + 2 = 38
3 2 4 1 3 9 + 6 + 8 + 8 = 31
3 4 1 2 3 11 + 8 + 1 + 3 = 23
3 4 2 1 3 11 + 3 + 16 + 8 = 38
4 1 2 3 4 8 + 1 + 3 + 11 = 23
4 1 3 2 4 8 + 8 + 9 + 6 = 31
4 2 1 3 4 3 + 16 + 8 + 11 = 38
4 2 3 1 4 3 + 3 + 4 + 11 = 21
4 3 1 2 4 2 + 4 + 1 + 6 = 13
4 3 2 1 4 2 + 9 + 16 + 11 = 38

So there are four permutations that give the same minumum cost of 13:

  1. 1 2 4 3 1
  2. 2 4 3 1 2
  3. 3 1 2 4 3
  4. 4 3 1 2 4

Upon closer inspection they’re rotations of the same ordering.