Check by computation that:
- \(C(7, 2) = C(7, 5)\)
\[\binom{7}{2} = \frac{7 \cdot 6}{2 \cdot 1} = 21\] \[\binom{7}{5} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 21\]
- \(C(6, 4) = C(6, 2)\)
\[\binom{6}{4} = \frac{6 \cdot 5 \cdot 4 \cdot 3}{4 \cdot 3 \cdot 2 \cdot 1} = 15\] \[\binom{6}{2} = \frac{6 \cdot 5}{2 \cdot 1} = 15\]