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Motivation



Superficial motivation

To answer questions like these:

I How many master nodes in a GKE cluster for availability?
I How many copies of data for durability?
I What’s the probability that a transmitted packet has no

corrupt bits?



Covert motivation

I Show there exist multiple ways of interpreting the same
formula.

I Show that even complex formulas might be composed of simple
pieces.

I Show the deriving a formula from first principles can make it
stick better than rote memorization.

I Show that combinatorics, due to its intuitiveness, is a good
gateway into math.



More formal statement of the end goal

To calculate probability that exactly k successes occur in n
independent trials, given a constant probability of success, p, at
each trial.

If we use example values: n = 10, k = 4 and p = 0.5, we need to
answer the following questions:

1. How many bitstrings of length 10 with four 1’s (like
1010101000, 1111000000, etc) exist?

2. What is the probability of each string occurring?



Bernoulli trials



Jacob Bernoulli



Bernoulli trial

I A random experiment with exactly two possible outcomes,
"success" and "failure".

I A "yes or no" question



Example Bernoulli trials

I H (success) or T (failure) of a coin flip
I Even (success) or odd (failure) number on a thrown die.
I Rain (success) or no rain (failure) tomorrow.



Sample space of an example Bernoulli trial

H

HC = T

Ω

Success: H

Failure: T



Is this a valid Bernoulli trial?

I H (success) or T (also success) in a coin flip



Yes

H ∪ T

(H ∪ T )C = ∅

Ω

Success: H ∪ T

Failure: ∅ (the empty set)



Is this a valid Bernoulli trial?

I Any number (success) in a die throw



Yes

1, 2, 3, 4, 5, 6

∅

Ω

Success: 1, 2, 3, 4, 5, 6

Failure: ∅ (the empty set)



Is this a valid Bernoulli trial?

I 1,2,3,4 (success) or 3,4,5,6 (failure) in a throw of a 6-sided die



No

Ω

1, 2 3, 4 5, 6

Success: 1, 2, 3, 4

Failure: 3, 4, 5, 6



Is this a valid Bernoulli trial?

I 1 (success) or 2 (failure) in a throw of a 6-sided die



No

Ω

1 2

3, 4, 5, 6

Success: 1

Failure: 2



Binomial coefficients



Combinatorial question

“How many k-subsets of an n-set exist?”

or, equivalently:

“How many sequences of n coin tosses with exactly k heads exist?”



Combinatorial answer

We can pick k positions for heads out of all n available positions in:

(
n

k

)

ways.

(Other common notations: C(n, k), nCk, nCk)



Blaise Pascal



Pascal’s triangle, up to 5
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Pascal’s triangle, up to 5

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1



Pascal’s triangle, up to 5

n = 0: 1

n = 1: 1 1

n = 2: 1 2 1

n = 3: 1 3 3 1

n = 4: 1 4 6 4 1

n = 5: 1 5 10 10 5 1

One of the identities:

n∑
k=1

n = 1 + 2 + 3 + · · ·+ n = n(n + 1)
2 =

(
n + 1

2

)



Enumeration: zero heads in five coin tosses

Index Tosses Bitstring Positions Probability
1 TTTTT 00000 − (1− p)5



Enumeration: one head in five coin tosses

Index Tosses Bitstring Positions Probability
1 HTTTT 10000 {1} p(1− p)4

2 THTTT 01000 {2} p(1− p)4

3 TTHTT 00100 {3} p(1− p)4

4 TTTHT 00010 {4} p(1− p)4

5 TTTTH 00001 {5} p(1− p)4



Enumeration: two heads in five coin tosses

Index Tosses Bitstring Positions Probability
1 HHTTT 11000 {1, 2} p2(1− p)3

2 HTHTT 10100 {1, 3} p2(1− p)3

3 HTTHT 10010 {1, 4} p2(1− p)3

4 HTTTH 10001 {1, 5} p2(1− p)3

5 THHTT 01100 {2, 3} p2(1− p)3

6 THTHT 01010 {2, 4} p2(1− p)3

7 THTTH 01001 {2, 5} p2(1− p)3

8 TTHHT 00110 {3, 4} p2(1− p)3

9 TTHTH 00101 {3, 5} p2(1− p)3

10 TTTHH 00011 {4, 5} p2(1− p)3



Enumeration: three heads in five coin tosses

Index Tosses Bitstring Positions Probability
1 HHHTT 11100 {1, 2, 3} p3(1− p)2

2 HHTHT 11010 {1, 2, 4} p3(1− p)2

3 HHTTH 11001 {1, 2, 5} p3(1− p)2

4 HTHHT 10110 {1, 3, 4} p3(1− p)2

5 HTHTH 10101 {1, 3, 5} p3(1− p)2

6 HTTHH 10011 {1, 4, 5} p3(1− p)2

7 THHHT 01110 {2, 3, 4} p3(1− p)2

8 THHTH 01101 {2, 3, 5} p3(1− p)2

9 THTHH 01011 {2, 4, 5} p3(1− p)2

10 TTHHH 00111 {3, 4, 5} p3(1− p)2



Enumeration: four heads in five coin tosses

Index Tosses Bitstring Positions Probability
1 HHHHT 11110 {1, 2, 3, 4} p4(1− p)
2 HHHTH 11101 {1, 2, 3, 5} p4(1− p)
3 HHTHH 11011 {1, 2, 4, 5} p4(1− p)
4 HTHHH 10111 {1, 3, 4, 5} p4(1− p)
5 THHHH 01111 {2, 3, 4, 5} p4(1− p)



Enumeration: five heads in five coin tosses

Index Tosses Bitstring Positions Probability
1 HHHHH 11111 {1, 2, 3, 4, 5} p5



Summary of results

Successes in 5 tosses Number of possible outcomes
0 1
1 5
2 10
3 10
4 5
5 1

Total 32

We notice two important properties: total number of all cases and
symmetry in the numbers.



Interpretation of
(

n
k

)

The most intuitive (for me) formula and its interpretation:

(
n

k

)
= nk

k!

where nk = n · (n− 1) · . . . · (n− k + 1) (Pochhammer symbol or
falling/descending factorial)

(Other common notation: (n)k)

For example:
(10

3
)

= 103

3! = 10·9·8
3·2·1



Interpretation of
(

n
k

)

Example values: n = 3, k = 2

Permutations (order relevant) Combinations (order irrelevant)
1, 2 {1, 2}
1, 3 {1, 3}
2, 1 {1, 2}
2, 3 {2, 3}
3, 1 {1, 3}
3, 2 {2, 3}(

3
2

)
= 32

2! = 3 · 2
2 · 1 = 3



Interpretation of symmetry of
(

n
k

)
and

(
n

n−k

)

H H T

H T H

T H H

(
n

k

)
=
(

n

n− k

)
(

3
2

)
=
(

3
3− 2

)
=
(

3
1

)



Canonical formula for
(

n
k

)

The textbook formula is:

(
n

k

)
= n!

k!(n− k)!

(
n

k

)
= n · (n− 1) . . . · (n− k + 1) ·(((((

((((n− k) · . . . · 1
k!(((((

(((n− k) · . . . 1

(
10
3

)
= 10 · 9 · 8 · �7 · �6 · �5 · �4 · �3 · �2 · �1

(3 · 2 · 1)(�7 · �6 · �5 · �4 · �3 · �2 · �1)



Another interpretation of the canonical formula:
partitioning into two sets of given sizes

(
10
3

)
= 10 · 9 · 8 · �7 · �6 · �5 · �4 · �3 · �2 · �1

(3 · 2 · 1)(�7 · �6 · �5 · �4 · �3 · �2 · �1)

(
n

k

)
=
(

n

k, n− k

)
= n!

k!(n− k)!



Partitioning into two sets of given sizes, visually

Permutations of distinguishable elements Collapsed to H and T

H1 H2 T3 H H T

H1 T3 H2 H T H

H2 H1 T3 H H T

H2 T3 H1 H T H

T3 H1 H2 T H H

T3 H2 H1 T H H



Probability of independent events



Probability of independent events

P (A ∩B) = P (A)P (B)



Probability of independent events

Probability of any specific sequence of 10 tosses of a biased coin,
with exactly 5 heads, say HHHHHTTTTT

I n = 10
I k = 5
I P (H) = p
I P (T ) = 1− p

P (E) = pk(1− p)n−k = p5(1− p)5



Probability of independent events

Probability of any specific sequence of 10 tosses of a fair coin, with
exactly 5 heads, say HHHHHTTTTT

I n = 10
I k = 5
I P (H) = 1

2
I P (T ) = 1

2

P (E) =
(1

2

)5(1
2

)5
=
(1

2

)10



Probability of independent events

Total probability of all sequences of 10 tosses of a fair coin, with
exactly 5 heads.

Note: there are
(10

5
)

= 252 such sequences possible

I n = 10
I k = 5
I P (H) = 1

2
I P (T ) = 1

2

P (E) =
(

10
5

)(1
2

)5(1
2

)5
= 252 ·

(1
2

)10
= 0.2460938



Probability of independent events: combinatorial
probability

If outcomes are equally likely (such as a fair coin tosses), the total
probability of the event is the ratio of the number of favourable
outcomes to the number of all outcomes

Example: 5 heads in 10 coin tosses

I Event E is any 10 coin tosses with exactly 5 heads
I n = 10
I k = 5
I P (H) = 1

2
I P (T ) = 1

2

P (E) =
(10

5
)

210 = 0.2460938



Putting the pieces together

We have all the necessary pieces:

I Each outcome is a specific string with k successes out of n
elements. There exist

(n
k

)
strings with k successes (appearing

anywhere) among the letters in the n-long string.
I Each outcome has a probability pk · (1− p)n−k.

Therefore the total probability is the sum of probabilities of all those
mutually exclusive strings.



Probability mass function of the binomial
distribution



Formula for probability mass function of the binomial
distribution

(
n

k

)
pk(1− p)n−k

where:

I n is the number of trials
I k is the number of successes
I
(n

k

)
is the binomial coefficient

I p is the probability of success
I 1− p (also denoted as q) is the probability of failure



Special cases of the formula

I p = 0
I 1− p = 1
I k = 0 (x in source code)

(
n

k

)
pk(1− p)n−k =

(
n

0

)
· 00 · 1n = 1 · 1 · 1 = 1

if (p == 0) return((x == 0) ? R_D__1 : R_D__0);



Special cases of the formula

I p = 0
I 1− p = 1
I k 6= 0

(
n

k

)
pk(1− p)n−k =

(
n

k

)
· 0k · 1n−k = 0

if (p == 0) return((x == 0) ? R_D__1 : R_D__0);



Special cases of the formula

I p = 1
I 1− p = 0 (q in the source code)
I k = n

(
n

k

)
pk(1− p)n−k =

(
n

n

)
· 1k · 00 = 1

if (q == 0) return((x == n) ? R_D__1 : R_D__0);



Special cases of the formula

I p = 1
I 1− p = 0
I k 6= n

(
n

k

)
pk(1− p)n−k =

(
n

k

)
· 1k · 0n−k = 0

if (q == 0) return((x == n) ? R_D__1 : R_D__0);



Special cases of the formula

I n = 0
I k = 0

(
n

k

)
pk(1− p)n−k = 1 · p0 · (1− p)0 = 1

if (x == 0) {
if(n == 0) return R_D__1;



R dbinom_raw function definition (written in C)

double dbinom_raw(double x, double n, double p, double q,
int give_log)

{
double lf, lc;

if (p == 0) return((x == 0) ? R_D__1 : R_D__0);
if (q == 0) return((x == n) ? R_D__1 : R_D__0);

if (x == 0) {
if(n == 0) return R_D__1;
lc = (p < 0.1) ? -bd0(n,n*q) - n*p : n*log(q);
return( R_D_exp(lc) );

}
if (x == n) {

lc = (q < 0.1) ? -bd0(n,n*p) - n*q : n*log(p);
return( R_D_exp(lc) );

}
if (x < 0 || x > n) return( R_D__0 );
[...]

}



Binomial function in GSL

double
gsl_ran_binomial_pdf (const unsigned int k, const double p,

const unsigned int n)
{

if (k > n)
{

return 0;
}

else
{

double P;

if (p == 0)
{

P = (k == 0) ? 1 : 0;
}

else if (p == 1)
{

P = (k == n) ? 1 : 0;
}

[...]



Total probability

I p = 0.5

n∑
k=0

(
n

k

)(1
2

)k(1
2

)n−k

=
n∑

k=0

(
n

k

)(1
2

)n

=

=
(1

2

)n n∑
k=0

(
n

k

)
=
(1

2

)n

2n = 2−n2n = 1



Bijection between binary strings and the power set

Set: {a, b, c}

Index Binary string Subset
1 000 {}
2 100 {a}
3 010 {b}
4 001 {c}
5 110 {a, b}
6 101 {a, c}
7 011 {b, c}
8 111 {a, b, c}



Bijection between binomial coefficients and the power set

Set: {a, b, c}

Index Binomial coeff. # of subsets Subsets
1

(3
0
)

1 {}
2

(3
1
)

3 {a}, {b}, {c}
3

(3
2
)

3 {a, b}, {a, c}, {b, c}
4

(3
3
)

1 {a, b, c}



Practical examples



GKE master node failure probabilities

1. What’s the probability that exactly one of the master nodes
fails?

2. What’s the probability that at least one of the master nodes
fails?

3. What’s the probability that all master nodes fail?
4. What’s the probability that no master nodes fail?



GKE master node failure probabilities

I Event of interest (E): Exactly one master node fails
I Setup: One master node
I Probability of node failure: 0.5

Outcome Probability In E?
0.5 No
0.5 Yes∑

i∈E P (i) = 0.5

P (n, k, p) =
(

n

k

)
pk(1− p)n−k

P (1, 1, 0.5) =
(

1
1

)(1
2

)1(1
2

)0
= 1 · 1

2 · 1 = 1
2



GKE master node failure probabilities
I Event of interest (E): Exactly one master node fails
I Setup: Three master nodes

Outcome Probability In event of interest?
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No∑

i∈E P (i) = 0.375

P (3, 1, 0.5) =
(

3
1

)(1
2

)1(1
2

)2
= 3 · 1

2 ·
1
4 = 3

8



GKE master node failure probabilities

I Event of interest (E): At least one master node fails
I Setup: One master node

Outcome Probability In E?
0.5 No
0.5 Yes∑

i∈E P (i) = 0.5

P (1, 1, 0.5) =
(

1
1

)(1
2

)1(1
2

)0
= 1 · 1

2 · 1 = 1
2



GKE master node failure probabilities
I Event of interest (E): At least one master node fails
I Setup: Three master nodes

Outcome Probability In event of interest?
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 Yes∑

i∈E P (i) = 0.875

3∑
k=1

P (3, k, 0.5) = (2n − 1)pn = 7 · 1
8 = 7

8



GKE master node failure probabilities

I Event of interest (E): No master nodes fail
I Setup: One master node

Outcome Probability In E?
0.5 Yes
0.5 No∑

i∈E P (i) = 0.5

P (1, 0, 0.5) =
(

0
0

)(1
2

)0(1
2

)1
= 1 · 1 · 1

2 = 1
2



GKE master node failure probabilities
I Event of interest (E): No master nodes fail
I Setup: Three master nodes

Outcome Probability In event of interest?
0.5 · 0.5 · 0.5 = 0.125 Yes
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No∑

i∈E P (i) = 0.125

P (3, 0, 0.5) =
(

3
0

)(1
2

)0(1
2

)3
= 1 · 1 · 1

8 = 1
8



GKE master node failure probabilities

I Event of interest (E): All master nodes fail
I Setup: One master node

Outcome Probability In E?
0.5 No
0.5 Yes∑

i∈E P (i) = 0.5

P (1, 1, 0.5) =
(

0
0

)(1
2

)1(1
2

)0
= 1 · 1

2 · 1 = 1
2



GKE master node failure probabilities
I Event of interest (E): All master nodes fail
I Setup: Three master nodes

Outcome Probability In event of interest?
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 No
0.5 · 0.5 · 0.5 = 0.125 Yes∑

i∈E P (i) = 0.125

P (3, 3, 0.5) =
(

3
3

)(1
2

)3(1
2

)0
= 1 · 1

8 · 1 = 1
8



Questions?
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