Beneficiaries of Bernoulli

Table of contents

Motivation

Bernoulli trials

Binomial coefficients

Probability of independent events

Probability mass function of the binomial distribution

Practical examples

Motivation

Superficial motivation

To answer questions like these:

- How many master nodes in a GKE cluster for availability?
- How many copies of data for durability?
- What's the probability that a transmitted packet has no corrupt bits?

Covert motivation

- Show there exist multiple ways of interpreting the same formula.
- Show that even complex formulas might be composed of simple pieces.
- Show the deriving a formula from first principles can make it stick better than rote memorization.
- Show that combinatorics, due to its intuitiveness, is a good gateway into math.

To calculate probability that exactly k successes occur in n independent trials, given a constant probability of success, p, at each trial.

If we use example values: n = 10, k = 4 and p = 0.5, we need to answer the following questions:

- 1. How many bitstrings of length 10 with four 1's (like 1010101000, 1111000000, etc) exist?
- 2. What is the probability of each string occurring?

Bernoulli trials

Jacob Bernoulli

Bernoulli trial

- A random experiment with exactly two possible outcomes, "success" and "failure".
- ► A "yes or no" question

Example Bernoulli trials

- ► *H* (success) or *T* (failure) of a coin flip
- Even (success) or odd (failure) number on a thrown die.
- Rain (success) or no rain (failure) tomorrow.

Sample space of an example Bernoulli trial

Success: H

Failure: T

Is this a valid Bernoulli trial?

► *H* (success) or *T* (also success) in a coin flip

Success: $H \cup T$

Failure: \emptyset (the empty set)

Is this a valid Bernoulli trial?

► Any number (success) in a die throw

Success: 1, 2, 3, 4, 5, 6

Failure: \emptyset (the empty set)

Is this a valid Bernoulli trial?

▶ 1,2,3,4 (success) or 3,4,5,6 (failure) in a throw of a 6-sided die

Success: 1, 2, 3, 4

Failure: 3, 4, 5, 6

Is this a valid Bernoulli trial?

▶ 1 (success) or 2 (failure) in a throw of a 6-sided die

No

Success: 1

Failure: 2

Binomial coefficients

Combinatorial question

"How many k-subsets of an n-set exist?"

or, equivalently:

"How many sequences of n coin tosses with exactly k heads exist?"

We can pick k positions for heads out of all \boldsymbol{n} available positions in:

ways.

(Other common notations: C(n,k), nCk, nC_k)

Blaise Pascal

Pascal's triangle, up to 5

Pascal's triangle, up to 5

Pascal's triangle, up to 5

$$n = 0$$
:
 1

 $n = 1$:
 1
 1

 $n = 2$:
 1
 2
 1

 $n = 3$:
 1
 3
 3
 1

 $n = 4$:
 1
 4
 6
 4
 1

 $n = 5$:
 1
 5
 10
 10
 5
 1

One of the identities:

$$\sum_{k=1}^{n} n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \binom{n+1}{2}$$

Enumeration: zero heads in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	TTTTTT	00000	—	$(1-p)^5$

Enumeration: one head in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	HTTTT	10000	{1}	$p(1-p)^4$
2	THTTT	0 1 000	$\{2\}$	$p(1-p)^4$
3	TTHTT	00100	$\{3\}$	$p(1-p)^4$
4	TTTHT	00010	$\{4\}$	$p(1-p)^4$
5	TTTT H	00001	$\{5\}$	$p(1-p)^4$

Enumeration: two heads in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	HHTTT	11000	$\{1, 2\}$	$p^2(1-p)^3$
2	HTHTT	10100	$\{1, 3\}$	$p^2(1-p)^3$
3	HTTHT	10010	$\{1, 4\}$	$p^2(1-p)^3$
4	HTTTH	10001	$\{1, 5\}$	$p^2(1-p)^3$
5	THHTT	01100	$\{2, 3\}$	$p^2(1-p)^3$
6	THTTT	01010	$\{2, 4\}$	$p^2(1-p)^3$
7	THTTH	01001	$\{2, 5\}$	$p^2(1-p)^3$
8	TTHHT	00110	$\{3, 4\}$	$p^2(1-p)^3$
9	TTHTH	00101	$\{3, 5\}$	$p^2(1-p)^3$
10	TTTHH	00011	$\{4, 5\}$	$p^2(1-p)^3$

Enumeration: three heads in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	HHHTT	11100	$\{1, 2, 3\}$	$p^3(1-p)^2$
2	HHTHT	11010	$\{1, 2, 4\}$	$p^3(1-p)^2$
3	HHTTH	11001	$\{1, 2, 5\}$	$p^3(1-p)^2$
4	HTHHT	10110	$\{1, 3, 4\}$	$p^3(1-p)^2$
5	HTHTH	10101	$\{1, 3, 5\}$	$p^3(1-p)^2$
6	HTTHH	10011	$\{1, 4, 5\}$	$p^3(1-p)^2$
7	THHHT	01110	$\{2, 3, 4\}$	$p^3(1-p)^2$
8	THHTH	01101	$\{2, 3, 5\}$	$p^3(1-p)^2$
9	THTHH	01011	$\{2, 4, 5\}$	$p^3(1-p)^2$
10	TTHHH	00111	$\{3, 4, 5\}$	$p^3(1-p)^2$

Enumeration: four heads in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	HHHHT	11110	$\{1, 2, 3, 4\}$	$p^4(1-p)$
2	HHHTH	11101	$\{1, 2, 3, 5\}$	$p^4(1-p)$
3	HHTHH	11011	$\{1, 2, 4, 5\}$	$p^4(1-p)$
4	HTHHH	1 0 111	$\{1, 3, 4, 5\}$	$p^4(1-p)$
5	THHHH	01111	$\{2, 3, 4, 5\}$	$p^4(1-p)$

Enumeration: five heads in five coin tosses

Index	Tosses	Bitstring	Positions	Probability
1	ННННН	11111	$\{1, 2, 3, 4, 5\}$	p^5

Summary of results

Successes in 5 tosses	Number of possible outcomes
0	1
1	5
2	10
3	10
4	5
5	1
Total	32

We notice two important properties: total number of all cases and symmetry in the numbers.

Interpretation of $\binom{n}{k}$

The most intuitive (for me) formula and its interpretation:

$$\binom{n}{k} = \frac{n^{\underline{k}}}{k!}$$

where $n^{\underline{k}} = n \cdot (n-1) \cdot \ldots \cdot (n-k+1)$ (Pochhammer symbol or falling/descending factorial)

(Other common notation: $(n)_k$)

For example: $\binom{10}{3} = \frac{10^3}{3!} = \frac{10 \cdot 9 \cdot 8}{3 \cdot 2 \cdot 1}$

Interpretation of $\binom{n}{k}$

Example values: n = 3, k = 2

Permutations (order relevant)	Combinations (order irrelevant)
1,2	$\{1,2\}$
1,3	$\{1,3\}$
2,1	$\{1,2\}$
2,3	$\{2,3\}$
3, 1	$\{1,3\}$
3,2	$\{2,3\}$
$\binom{3}{2} = \frac{3^2}{2!}$	$=\frac{3\cdot 2}{2\cdot 1}=3$

Interpretation of symmetry of $\binom{n}{k}$ and $\binom{n}{n-k}$

Canonical formula for $\binom{n}{k}$

The textbook formula is:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

$$\binom{n}{k} = \frac{n \cdot (n-1) \dots \cdot (n-k+1) \cdot (n-k) \dots \cdot 1}{k! (n-k) \dots \cdot 1}$$

$$\begin{pmatrix} 10\\3 \end{pmatrix} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1}}{(3 \cdot 2 \cdot 1)(\cancel{7} \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1})}$$

Another interpretation of the canonical formula: partitioning into two sets of given sizes

$$\binom{10}{3} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1}}{(3 \cdot 2 \cdot 1)(7 \cdot \cancel{6} \cdot \cancel{5} \cdot \cancel{4} \cdot \cancel{3} \cdot \cancel{2} \cdot \cancel{1})}$$
$$\binom{n}{k} = \binom{n}{k, n-k} = \frac{n!}{k!(n-k)!}$$

Partitioning into two sets of given sizes, visually

$$P(A \cap B) = P(A)P(B)$$

Probability of any **specific** sequence of 10 tosses of a **biased** coin, with exactly 5 heads, say HHHHHTTTTT

▶
$$n = 10$$

▶ $k = 5$
▶ $P(H) = p$
▶ $P(T) = 1 - p$

$$P(E) = p^{k}(1-p)^{n-k} = p^{5}(1-p)^{5}$$

Probability of any **specific** sequence of 10 tosses of a **fair** coin, with exactly 5 heads, say HHHHTTTTT

▶
$$n = 10$$

▶ $k = 5$
▶ $P(H) = \frac{1}{2}$
▶ $P(T) = \frac{1}{2}$

$$P(E) = \left(\frac{1}{2}\right)^5 \left(\frac{1}{2}\right)^5 = \left(\frac{1}{2}\right)^{10}$$

Total probability of **all** sequences of 10 tosses of a **fair** coin, with exactly 5 heads.

Note: there are $\binom{10}{5} = 252$ such sequences possible

•
$$n = 10$$

• $k = 5$
• $P(H) = \frac{1}{2}$
• $P(T) = \frac{1}{2}$

$$P(E) = {\binom{10}{5}} {\left(\frac{1}{2}\right)}^5 {\left(\frac{1}{2}\right)}^5 = 252 \cdot {\left(\frac{1}{2}\right)}^{10} = 0.2460938$$

Probability of independent events: combinatorial probability

If outcomes are equally likely (such as a fair coin tosses), the total probability of the event is the ratio of the number of favourable outcomes to the number of all outcomes

Example: 5 heads in 10 coin tosses

► Event *E* is any 10 coin tosses with exactly 5 heads
 n = 10
 k = 5
 P(*H*) = ¹/₂
 P(*T*) = ¹/₂

$$P(E) = \frac{\binom{10}{5}}{2^{10}} = 0.2460938$$

Putting the pieces together

We have all the necessary pieces:

Each outcome is a specific string with k successes out of n elements. There exist ⁿ_k strings with k successes (appearing anywhere) among the letters in the n-long string.

• Each outcome has a probability $p^k \cdot (1-p)^{n-k}$.

Therefore the total probability is the sum of probabilities of all those mutually exclusive strings.

Probability mass function of the binomial distribution

Formula for probability mass function of the binomial distribution

$$\binom{n}{k}p^k(1-p)^{n-k}$$

where:

- n is the number of trials
- k is the number of successes
- $\binom{n}{k}$ is the binomial coefficient
- p is the probability of success
- ▶ 1 p (also denoted as q) is the probability of failure

$$\binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{0} \cdot 0^0 \cdot 1^n = 1 \cdot 1 \cdot 1 = 1$$

if (p == 0) return((x == 0) ? R_D_1 : R_D_0);

$$\binom{n}{k}p^k(1-p)^{n-k} = \binom{n}{k} \cdot 0^k \cdot 1^{n-k} = 0$$

if (p == 0) return((x == 0) ? R_D_1 : R_D_0);

$$\binom{n}{k}p^k(1-p)^{n-k} = \binom{n}{n} \cdot 1^k \cdot 0^0 = 1$$

if (q == 0) return((x == n) ? R_D_1 : R_D_0);

▶
$$p = 1$$

▶ $1 - p = 0$
▶ $k \neq n$

$$\binom{n}{k} p^k (1-p)^{n-k} = \binom{n}{k} \cdot 1^k \cdot 0^{n-k} = 0$$

if (q == 0) return((x == n) ? R_D_1 : R_D_0);

> n = 0
> k = 0
$$\binom{n}{k} p^{k} (1-p)^{n-k} = 1 \cdot p^{0} \cdot (1-p)^{0} = 1$$
if (x == 0) {
 if (n == 0) return B D 1:

R dbinom_raw function definition (written in C)

```
double dbinom_raw(double x, double n, double p, double q,
                  int give_log)
£
    double lf, lc;
   if (p == 0) return((x == 0) ? R_D_1 : R_D_0);
   if (q == 0) return((x == n) ? R_D_1 : R_D_0);
   if (x == 0) {
       if(n == 0) return R_D_1;
       lc = (p < 0.1) ? -bd0(n,n*q) - n*p : n*log(q);
       return( R_D_exp(lc) );
    3
   if (x == n) {
       lc = (q < 0.1) ? -bd0(n,n*p) - n*q : n*log(p);
       return( R_D_exp(lc) );
    3
   if (x < 0 || x > n) return( R D 0):
    [...]
3
```

Binomial function in GSL

```
double
gsl_ran_binomial_pdf (const unsigned int k, const double p,
                      const unsigned int n)
{
 if (k > n)
    ſ
     return 0;
    3
  else
    Ł
      double P;
      if (p == 0)
        ſ
         P = (k == 0) ? 1 : 0;
        }
      else if (p == 1)
        ſ
         P = (k == n) ? 1 : 0;
       3
      [...]
```

Total probability

$$p = 0.5$$

$$\sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^{k} \left(\frac{1}{2}\right)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^{n} =$$

$$= \left(\frac{1}{2}\right)^{n} \sum_{k=0}^{n} \binom{n}{k} = \left(\frac{1}{2}\right)^{n} 2^{n} = 2^{-n} 2^{n} = 1$$

Bijection between binary strings and the power set

Set: $\{a, b, c\}$

Index	Binary string	Subset
1	000	{}
2	100	$\{a\}$
3	010	$\{b\}$
4	001	$\{c\}$
5	110	$\{a,b\}$
6	101	$\{a,c\}$
7	011	$\{b,c\}$
8	111	$\{a, b, c\}$

Bijection between binomial coefficients and the power set

Index	Binomial coeff.	# of subsets	Subsets
1	$\binom{3}{0}$	1	{}
2	$\binom{3}{1}$	3	$\{a\},\{b\},\{c\}$
3	$\binom{3}{2}$	3	$\{a,b\},\{a,c\},\{b,c\}$
4	$\begin{pmatrix} 3\\3 \end{pmatrix}$	1	$\{a, b, c\}$

Practical examples

- 1. What's the probability that exactly one of the master nodes fails?
- 2. What's the probability that at least one of the master nodes fails?
- 3. What's the probability that all master nodes fail?
- 4. What's the probability that no master nodes fail?

- Event of interest (E): **Exactly one** master node fails
- Setup: One master node
- Probability of node failure: 0.5

- Event of interest (E): **Exactly one** master node fails
- Setup: Three master nodes

Outcome	Probability	In event of interest?	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No	
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No	
$\sum_{i \in E} P(i) = 0.375$			
$P(3,1,0.5) = \binom{3}{1} \left(\frac{1}{2}\right)^1 \left(\frac{1}{2}\right)^2 = 3 \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{3}{8}$			

Event of interest (E): At least one master node fails
 Setup: One master node

- Event of interest (E): At least one master node fails
- Setup: Three master nodes

Outcome	Probability	In event of interest?
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
•••	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
•••	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes

 $\sum_{i \in E} P(i) = 0.875$

 $\sum_{k=1}^{3} P(3,k,0.5) = (2^n - 1)p^n = 7 \cdot \frac{1}{8} = \frac{7}{8}$

Event of interest (E): No master nodes fail

Setup: One master node

- Event of interest (E): No master nodes fail
- Setup: Three master nodes

Outcome	Probability	In event of interest?		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
$\sum_{i \in E} P(i) = 0.125$				
$P(3,0,0.5) = \binom{3}{0} \left(\frac{1}{2}\right)^0 \left(\frac{1}{2}\right)^3 = 1 \cdot 1 \cdot \frac{1}{8} = \frac{1}{8}$				

Event of interest (E): All master nodes fail

Setup: One master node

- Event of interest (E): All master nodes fail
- Setup: Three master nodes

Outcome	Probability	In event of interest?		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	No		
	$0.5 \cdot 0.5 \cdot 0.5 = 0.125$	Yes		
$\sum_{i \in E} P(i) = 0.125$				
$P(3,3,0.5) = \binom{3}{3} \left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^0 = 1 \cdot \frac{1}{8} \cdot 1 = \frac{1}{8}$				

Questions?